A High-Density Subthreshold SRAM with Data-Independent Bitline Leakage and Virtual Ground Replica Scheme

Tae-Hyoung Kim, Jason Liu, John Keane, and Chris H. Kim

University of Minnesota, Minneapolis

Agenda

- Introduction to Subthreshold Operation
- Proposed Subthreshold SRAM
 - Decoupled 10T SRAM Cell
 - Write margin improvement utilizing Reverse Short Channel Effect (RSCE)
 - Data-independent bitline leakage
 - Virtual ground replica scheme
 - Write-back scheme for stability
- 0.2V 480kb SRAM Measurements
- Conclusions

Introduction to Subthreshold Operation

- Characteristics
 - V_{GS} is smaller than V_{TH}
 - Exponential current equation

$$I_{D} = I_{D0} \frac{W}{L_{eff}} e^{\frac{V_{GS} - V_{th}}{mV_{t}}} (1 - e^{\frac{-V_{DS}}{V_{t}}})$$

- For low power, minimum energy applications

Applications of Subthreshold SRAM

- Wireless sensor nodes: data memory for DSPs
- Medical devices: hearing aids, pacemakers
- Portable electronics: cellular phones, PDAs

Subthreshold SRAM Design Issues

- Mainly due to small I_{on}-to-I_{off} ratio and current variation in subthreshold
 - Read failure
 - : Reduced SNM, small bitline sensing margin
 - Write failure
 - : Weak write path
 - Limited array efficiency
 - : Data-dependent bitline leakage
 - Performance and power variation

SNM of 6T SRAM Cell

- Read SNM is 18% of hold SNM at 0.2V
- Read SNM is too small for robust subthreshold operation

SNM of Proposed 10T SRAM Cell

- Decoupled cell node
- Read SNM is equal to hold SNM
- SNM = 38% of supply voltage
- Stability only limited by cross-coupled latch

Write Margin Improvement

- Conventional Techniques
 - Sizing: access TR vs. PMOS in latch
 - Higher WL voltage for access TR

 Utilize Reverse Short Channel Effect (RSCE) to strengthen write path

HALO Impact in Subthreshold

- HALO to mitigate Short Channel Effect (SCE) in superthreshold
- Negligible SCE in subthreshold region
- Dominant RSCE in subthreshold region

Utilizing RSCE for Improved Drive Current

- Optimal channel length in subthreshold region
 - L_{opt}=0.55µm for max. current/width
 - $-L_{opt}^{i}=0.36\mu m$ for max. performance/width

Utilizing RSCE for Write Margin Improvement

- Write access TRs utilizing RSCE (L=3xL_{min})
- Increased current drivability: 3.3x at 0.2V
- Write margin improvement of 70mV at 0.2V

Utilizing RSCE for Delay Improvement

Fat NMOS devices to utilize RSCE

- Narrower width for the same current drivability
- Reduced junction capacitance
- Improved delay due to reduced capacitance

Data-Dependent BL Leakage Problem

- Undetermined region due to data-dependency
- Possible read failure using single threshold read buffer

Proposed Scheme with Data-Independent BL Leakage

- Bitline logic high and low levels are fixed
- Logic level difference of 130mV at 0.2V with 1kcells/bitline

Virtual Ground Replica Scheme

- Conventional: fixed switching threshold
- This work: VGND tracks RBL logic low level

Virtual Ground Replica Scheme

- Shared VGND across multiple read buffers
- Replica bitline with fixed data to generate VGND

Pseudo-Write Problem

- Pseudo-write problem in unselected columns
- Worst case SNM due to current path

- Write after read to solve pseudo-write problem
- Write-back to unselected columns

480kb SRAM Chip Implementation

Technology	130nm 8-metal CMOS
Chip Size	4.1x1.5mm ²
VCC min	0.2V @ 1024 Cells per Bitline, 27°C
Read Access Cycle	120kHz @ 0.2V, 27°C
Leakage Current (480k SRAM)	10.2µА @ 0.2V, 27°С
Read Bitline Swing	~0.1V @ 0.2V, 27°C

V_{min} and Leakage Measurements

- V_{min_read} = 0.17V @ 1k cells/bitline
- V_{min_write} = 0.20V
- 90% I_{leak} reduction at 0.2V compared to 1.2V

Performance Measurements

- 4.5x delay difference between four quadrants
- Exponential delay reduction with higher supply

VGND Measurements

- Exponential increase of normalized VGND
- 0.1V bitline swing at VDD=0.2V
- VGND relatively constant with temperature

Improved Delay Utilizing RSCE

Td1+Td_ckt+Td2 Td1+Td2 Td_ckt Td1 Td2 500.0%/ Auto **Bypass Path** Input 0.2 Address , **28% Delay** Input Change Improvement Row decoder 0 ► P Test Circu (Input Mu (Proposed) **Test Circuits** This work: 0.88µs (Output **Delay of** 0.2 **Bypass Path** Demux) Row decoder ► C (Conventional) 0 Control Conventional: 1.22us **Bypass Path** Aeasurement Menu Source Select: Clear Measure Thresholds Settings P: Proposed, C: Conventional

- Differential delay measurement circuit
- 28% delay improvement in predecoder utilizing RSCE

Conclusions

- Circuit techniques proposed to enable a 0.2V 480kb subthreshold SRAM
 - Decoupled 10T cell for improved read stability
 - Utilization of RSCE for improved write margin
 - Data-independent leakage for enabling 1k cells/bitline
 - Virtual ground replica scheme for optimal read buffer sensing margin
 - Write-back scheme to eliminate pseudo-write problem