Silicon Odometer: An On-Chip Reliability Monitor for Measuring Frequency Degradation of Digital Circuits

Tae-Hyoung Kim, Randy Persaud and <u>Chris H. Kim</u>

Department of Electrical and Computer Engineering University of Minnesota, Minneapolis

> chriskim@umn.edu www.umn.edu/~chriskim

Outline

- NBTI Overview
- Previous NBTI Measurement Method
- Proposed Silicon Odometer Circuit

 Beat Frequency Detection Scheme
- Test Chip Measurement Results
 - Voltage and Temperature Dependency
 - DC and AC Stress
- Conclusions

Negative Bias Temperature Instability

- One of the most critical reliability issues today
- Holes in inversion layer interact with Si-H bonds at interface when device is under stress (V_{gs}= -V_{dd}), → leave interface traps
- NBTI manifests itself as an increase in |V_{to}|

Stress and Recovery

- When a stressed PMOS is turned off
 - Si-H bond breaking stops
 - H diffused back to Si/SiO₂ interface and anneals broken bonds
- AC stress increases lifetime projection
- Increasing field and temperature, reduced gate overdrive reintroduce NBTI concerns in the late 90s

NBTI Signal Probability Dependence

- Device is stressed when input signal is low
- Signal Probability (SP): Probability that the input signal is low
- NBTI effect is SP dependent

NBTI Impact on Digital Circuits

Logic circuits

- F_{MAX} degrades
- Leakage power reduces

Memory circuits

- Read margin worsens
- Write stability improves
- Read delay remains the same
- NBTI affects critical circuit parameters
- Need to design circuits with NBTI-induced shifts comprehended

Circuit Techniques to Mitigate the Impact of NBTI Degradation

- Product margin-testing, guard-banding
- Size up devices
 - Negates benefits of scaling, increases power
- Toggle circuit nodes
 - Less degradation under AC stress
- Lower temperature
 - Difficult task now...dense/fast designs are hot
- Progressive V_{tp} and V_{dd} tuning
 - We can slowly increase V_{dd} or forward body bias PMOS as performance degrades with aging (Intel, ISSCC07)

Bottom line: Need to accurately measure the NBTI effect and develop compact models

Previous NBTI Measurement Technique

- Measure ring oscillator frequency shift
- Main limitations
 - Low sensing resolution (few % frequency change)
 - Sensitive to environmental variation during measurement
 - Invasive, not suitable for run-time monitoring

- Two free running ROSCs for beat frequency detection
- Sample stressed ROSC output using reference ROSC output
- Count PC_OUT to determine frequency degradation
- Insensitive to environmental variation

- Operation example
 - 1% delay difference before stress \rightarrow N = 100
 - 2% delay difference after stress \rightarrow N' = 50
 - N´ changes by 50 for 1% change in delay → sub-ps resolution degradation measurements

Sensing Resolution Comparison

Frequency degradation(%)

High delay sensing resolution

 For N=100 and T=4ns, maximum sensing resolution is 0.4ps (0.01%)

Test Chip Architecture

- Frequency trimming capacitors set the initial frequency difference between the stressed and reference ROSC
- 5 bit majority voting circuit for bubble rejection

- 4ns ROSC period, frequency trimming capacitors
- Stress mode and measurement mode
- Meas_Stress triggers the measurement

Various Stress/Recovery Modes

Phase Comparator Circuit Design

- Delayed ROSC_REF used as reference clock
- Dynamic circuit implementation
- PC_OUT contains the beat frequency

Simulated Waveforms

- 3 ROSC cycles of measurement latency
- Static signal from 5b majority voting circuit
- DETECT signal gives beat frequency

Test Chip Implementation

- 0.13µm MM/RF CMOS, 265 x 132 µm² layout area
- Stressed and reference ROSCs have identical layout
- Chips were not recycled since once stressed, they will not fully recover

Odometer Measurement Results

- Resolution high enough (<0.02% or <0.8ps) for nonaccelerated stress measurements
- 80% recovery rate due to relatively thick T_{ox}
- Worse degradation at higher temperature

Stress Voltage Dependency

- Degradation exponentially dependent on the electric field
- Delay degradation has same power-law dependency as ΔV_{tp}

DC Stress versus AC Stress

- AC stress results in 43-50% less frequency degradation
- Weak frequency dependency

Many baby steps takes you same distance as a few giant steps

This behavior also confirmed by recursive RD models

Conclusions

- NBTI is a growing threat to circuit reliability
- On-chip NBTI monitor circuits are needed to understand aging impact on circuits
- <u>Silicon odometer</u> circuit demonstrated
 - Fully digital, minimal calibration
 - Sub-picosecond sensing resolution
 - Sub-microsecond measurement time for minimal annealing
 - Differential measurement eliminates common-mode environmental variation impact

Acknowledgements:

IBM for financial support and UMC for chip fabrication