An On-Chip Monitor for Statistically Significant Circuit Aging Characterization

John Keane1,2, Wei Zhang1, and Chris H. Kim1

1. University of Minnesota, Minneapolis

2. Now with Intel Corporation, Hillsboro, OR
Outline of Presentation

• Circuit aging
• Motivation for on-chip aging sensors
• Silicon Odometer
• Comparison with alternative circuit methods
• Variation in transistor aging
• 65nm test circuit design & measured results
• Conclusions
Aging Impacts on Circuits

• Bias Temperature Instability (BTI)
 – SRAM SNM degrades; write stability can improve (if NBTI dominant)

• Hot Carrier Injection (HCl) & BTI
 – F_{MAX} degrades
 – Critical path changes due to asymmetric stress conditions
 – Subthreshold leakage decreases

• Time Dependent Dielectric Breakdown
 – Increased I_{GATE} leads to reduced o/p swing, SNM degradation, etc...
 – Device failure

R. Rodriguez, et al., IEDL, 2002

Breakdowns in different locations in SRAM cell
Motivation for Reliability Monitors

• Shrinking feature sizes, voltage margins

• Process changes improve one metric while perhaps leading to worse aging

• On-chip sensors characterize or trigger compensation schemes for aging mechanisms
 – High frequency shift measurement resolution
 – Fast measurements
 – Automated tests with simple interfaces
 – No expensive probing equipment
 – Test many devices in parallel
Silicon Odometer Beat Frequency Detection

- Two free running ROSCs for beat frequency detection
- Sample stressed ROSC output using reference ROSC
- Measure PC_OUT to determine freq. degradation
- Insensitive to environmental variation

Stressed ROSC (freq = f_{stress})

Reference ROSC (freq = f_{ref})

Phase Comp.

PC_OUT

($f_{PC} = f_{\text{ref}} - f_{\text{stress}}$)

Kim, et al., JSSC, 2008
Keane, et al., JSSC, 2010
Beat Frequency Detection

- Operation example:
 - 1% delay difference before stress → $N1 = 100$
 - 2% delay difference after stress → $N2 = 50$
 - $N2$ changes by 50 for 1% change in delay → sub-ps resolution Δf measurements
Comparison of On-Chip Aging Monitors

<table>
<thead>
<tr>
<th>System</th>
<th>1 ROSC T-Counter</th>
<th>2 ROSC T-Counter</th>
<th>Silicon Odometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Diagram</td>
<td>Stress ROSC → Counter</td>
<td>Ref. ROSC → Counter = Constant N1, Stress ROSC → Counter = Variable N2</td>
<td>Ref. ROSC → Phase Comp. → Stress ROSC</td>
</tr>
<tr>
<td>Benefits</td>
<td>Compact</td>
<td>Simple, Differential</td>
<td>High resolution, Short measurements, Differential</td>
</tr>
<tr>
<td>Issues</td>
<td>External timing reference. Sensitive to temporal variations</td>
<td>Measurement time vs. resolution tradeoff</td>
<td>Resolution degrades with larger shifts</td>
</tr>
<tr>
<td>Meas. time for 0.01% resolution</td>
<td>30 µs</td>
<td>30 µs</td>
<td>0.3 µs</td>
</tr>
<tr>
<td>Meas. error (simulation)</td>
<td>+10.18% / -8.57%</td>
<td>+0.26% / -0.38%</td>
<td>+0.06% / -0.07%</td>
</tr>
</tbody>
</table>

* Theoretical lower limit with ROSC period = 3ns, 65nm technology

** +/- 50mV ΔVCC; 0.4% Δf stress shift; 340ns measurement time
Variability in Transistor Aging

Spread in ΔV_{TH} increases w/ scaling
S. Pae, et al., TDMR 2008

ΔI_{ds} variation under NBTI stress
H. Yoshimoto, et al., IRPS 2010

- Finite number and random spatial distribution of discrete charges \rightarrow NBTI & HCl variation
- Inversely proportional to $A_{GATE} \rightarrow$ worse with scaling
- Small number of aging measurements not sufficient to characterize aging
Multiple Odometer System Setup

- Need stressed & reference ROSC frequencies to be close
- Difficult, costly to tune each stressed ROSC
- Use multiple Ref. ROSCs with different frequencies
- Cover the frequency distribution of the stressed array
Reference ROSC Trimming

- **Left:** Fresh full loop frequency distribution for 80 cell array with reference ROSC trimming range

- **Right:** Results from 3 Odometers for 1 ROSC under test
 - Low resolution obvious with an initial count of 41
• Only a section of each ROSC is stressed
• Other control devices are 2.5V thick oxide
• First measure the period of the ctrl loop
• During full loop measurement, cancel out this portion
Statistical Odometer 65nm Test Chip

- Measured with LabVIEW & NI DAQ board
- Each reading triggered with a single pulse from tester
- ROSC put back into stress mode before results scan out

Specifications

<table>
<thead>
<tr>
<th>Process</th>
<th>65nm LP CMOS, 7M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic / I/O supplies</td>
<td>1.2V / 2.5V</td>
</tr>
<tr>
<td>Active Area</td>
<td>~257x475μm²</td>
</tr>
<tr>
<td>Total Area</td>
<td>369x493μm²</td>
</tr>
<tr>
<td>Odom. Δf Error Floor</td>
<td>0.07%</td>
</tr>
<tr>
<td>Measure Interrupt</td>
<td>≥1μs</td>
</tr>
<tr>
<td>DUT dimensions</td>
<td>P: 300/60nm</td>
</tr>
<tr>
<td></td>
<td>N: 200/60nm</td>
</tr>
<tr>
<td>σ/μ</td>
<td>1.32% - 1.78%</td>
</tr>
</tbody>
</table>
Si. Odom Measurement Error

- Find the error floor with no-stress experiments
- Typical single-ended ROSC readings on a scope vary with temperature/voltage
- Differential odometer readings cancel common-mode variations, even with fast measurements
- Longer stress interrupt for measurements result in more unwanted recovery
- Recovery is a larger portion of total experiment time at early points
 - Pulls them down \rightarrow steeper slope (i.e., larger n)
DC Stress-Induced PDF Shifts

- Fresh and post-stress ROSC frequency PDFs
- No noticeable change in the σ of the frequency itself
- Will see that σ of the frequency shift increases, though
No significant correlation of the frequency shift with fresh frequency

μ and σ of Δf increase w/ power law behavior
Frequency Distribution Fit

- Rauch found that the lognormal overestimated the high tails of his measured V_{TH} shifts (TDMR 2007)
- Our Δf measurements fit the lognormal
 - Fischer also found higher tail shift than Rauch (ESSDERC 2010)
Measured AC Stress Results

- Early stress AC results show lower Δf than DC due to BTI recovery
- Higher frequency stress results in a significant HCI component that dominates after some time
 - HCI less significant at lower voltage though
Conclusions

• We implemented an efficient statistical ROSC aging measurement system

• 65nm circuit measures Δf with an error of $\leq 0.07\%$, and stress interruptions of down to 1μs

• Fresh frequency and the AC or DC stress-induced Δf are uncorrelated

• Both μ and σ of Δf increase with stress, and the ratio of $[\sigma(\Delta f) / \mu(\Delta f)]$ decreases with stress time

• Circuits like this can provide valuable reliability learning and aid in areas such as modeling vs. silicon data correlation