
Tae-Hyoung Kim, Randy Persaud and Chris H. Kim

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis

chriskim@umn.edu
www.umn.edu/~chriskim
Outline

• NBTI Overview
• Previous NBTI Measurement Method
• Proposed Silicon Odometer Circuit
 – Beat Frequency Detection Scheme
• Test Chip Measurement Results
 – Voltage and Temperature Dependency
 – DC and AC Stress
• Conclusions
• One of the most critical reliability issues today
• Holes in inversion layer interact with Si-H bonds at interface when device is under stress \((V_{gs} = -V_{dd}) \), \(\rightarrow \) leave interface traps
• NBTI manifests itself as an increase in \(|V_{tp}| \)
Stress and Recovery

- When a stressed PMOS is turned off
 - Si-H bond breaking stops
 - H diffused back to Si/SiO₂ interface and anneals broken bonds
- AC stress increases lifetime projection
- Increasing field and temperature, reduced gate overdrive reintroduce NBTI concerns in the late 90s
• Device is stressed when input signal is low
• Signal Probability (SP): Probability that the input signal is low
• NBTI effect is SP dependent
NBTI Impact on Digital Circuits

Logic circuits
- F_{MAX} degrades
- Leakage power reduces

Memory circuits
- Read margin worsens
- Write stability improves
- Read delay remains the same

• NBTI affects critical circuit parameters
• Need to design circuits with NBTI-induced shifts comprehended
Circuit Techniques to Mitigate the Impact of NBTI Degradation

• Product margin-testing, guard-banding
• Size up devices
 – Negates benefits of scaling, increases power
• Toggle circuit nodes
 – Less degradation under AC stress
• Lower temperature
 – Difficult task now…dense/fast designs are hot
• Progressive V_{tp} and V_{dd} tuning
 – We can slowly increase V_{dd} or forward body bias PMOS as performance degrades with aging (Intel, ISSCC07)

Bottom line: Need to accurately measure the NBTI effect and develop compact models
Previous NBTI Measurement Technique

- Measure ring oscillator frequency shift
- Main limitations
 - Low sensing resolution (few % frequency change)
 - Sensitive to environmental variation during measurement
 - Invasive, not suitable for run-time monitoring

V. Reddy et al., IRPS, 2002
Proposed Silicon Odometer Circuit

- Two free running ROSCs for beat frequency detection
- Sample stressed ROSC output using reference ROSC output
- Count PC_OUT to determine frequency degradation
-Insensitive to environmental variation

\[\text{Stressed ROSC (freq} = f_{\text{stress}} \) \]
\[\text{Reference ROSC (freq} = f_{\text{ref}} \) \]

\[\text{PC_OUT (freq} = f_{\text{ref}} - f_{\text{stress}} \) \]
Principle of Silicon Odometer Circuit

Stressed ROSC (freq=f_{stress})

Reference ROSC (freq=f_{ref})

PC_OUT (freq=$f_{\text{ref}} - f_{\text{stress}}$)

• Operation example
 – 1% delay difference before stress $\Rightarrow N = 100$
 – 2% delay difference after stress $\Rightarrow N' = 50$
 – N' changes by 50 for 1% change in delay \Rightarrow sub-ps resolution degradation measurements

- Before stress
 $$N \cdot \frac{1}{f_{\text{ref}}} = (N - 1) \cdot \frac{1}{f_{\text{stress}}}$$

- After stress
 $$N' \cdot \frac{1}{f_{\text{ref}}} = (N' - 1) \cdot \frac{1}{f'_{\text{stress}}}$$

- % frequency degradation
 $$\frac{f'_{\text{stress}} - f_{\text{stress}}}{f_{\text{stress}}} = \frac{N' - N}{N' (N - 1)}$$
Sensing Resolution Comparison

- High delay sensing resolution
 - For $N=100$ and $T=4$ns, maximum sensing resolution is 0.4ps (0.01%)
• Frequency trimming capacitors set the initial frequency difference between the stressed and reference ROSC
• 5 bit majority voting circuit for bubble rejection
Ring Oscillator Circuit Design

- 4ns ROSC period, frequency trimming capacitors
- Stress mode and measurement mode
- Meas_Stress triggers the measurement
Various Stress/Recovery Modes

<table>
<thead>
<tr>
<th>Stress Mode</th>
<th>Meas_Stress</th>
<th>AC_Stress</th>
<th>Toggle</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC_Stress w/ toggle</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>DC_Stress w/o toggle</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC_Stress</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>Measurement</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
</tbody>
</table>
Phase Comparator Circuit Design

- Delayed ROSC_REF used as reference clock
- Dynamic circuit implementation
- PC_OUT contains the beat frequency
Simulated Waveforms

- 3 ROSC cycles of measurement latency
- Static signal from 5b majority voting circuit
- DETECT signal gives beat frequency
Test Chip Implementation

- 0.13µm MM/RF CMOS, 265 x 132 µm² layout area
- Stressed and reference ROSCs have identical layout
- Chips were not recycled since once stressed, they will not fully recover
Odometer Measurement Results

- Resolution high enough (<0.02% or <0.8ps) for non-accelerated stress measurements
- 80% recovery rate due to relatively thick T_{ox}
- Worse degradation at higher temperature
Degradation exponentially dependent on the electric field

Delay degradation has same power-law dependency as ΔV_{tp}

Stress Voltage Dependency

- $y = 0.0010 \times 0.1220$
- $y = 0.0028 \times 0.1158$

Frequency degradation

Time (sec)

1.2V DC stress, 30C
1.8V DC stress, 30C

0.67%
0.24%
AC stress results in 43-50% less frequency degradation

Weak frequency dependency
 - Many baby steps takes you same distance as a few giant steps

This behavior also confirmed by recursive RD models
Conclusions

• NBTI is a growing threat to circuit reliability
• On-chip NBTI monitor circuits are needed to understand aging impact on circuits
• Silicon odometer circuit demonstrated
 – Fully digital, minimal calibration
 – Sub-picosecond sensing resolution
 – Sub-microsecond measurement time for minimal annealing
 – Differential measurement eliminates common-mode environmental variation impact

Acknowledgements:
IBM for financial support and UMC for chip fabrication