A Switched Decoupling Capacitor Circuit for On-Chip Supply Resonance Damping

Jie Gu, Hanyong Eom and Chris H. Kim

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis

jiegu@umn.edu
http://www.umn.edu/~chriskim
Outline

• Introduction to resonant supply noise
• Proposed switched decap circuit
• Simulated supply noise suppression
• Test chip implementation
• Supply noise measurement results
• Conclusion
IC Power Supply: Underdamped RLC Network

On-Chip Power Grid

- Resonant noise exhibits large magnitude and long duration
- Causes timing violation, clock skew and reliability issue
- Excited by μP loop operation or sudden current spike

N. Na, IBM, ECTC 2004
Previous Passive Damping Techniques

- Increase R and C to bring down the Q factor
- Decap consumes large area and gate leakage
- Resistive damping worsens IR drop

\[Q = \frac{1}{R_{\text{wire}}} \sqrt{\frac{L}{C}} \]

Previous Active Damping Techniques

- Detect resonant noise and clamp the overshoot
- 1mA static current per 3mA load
- Hard to control trip points under PVT variation
- Only compensates voltage overshoot

J. Xu et al., Intel, ISSCC 2007
Previous Active Damping Techniques

- Switching decaps to boost the total charge
- 5mA quiescent current per regulator
- Limited swing and PVT sensitivity in opamp

M. Ang et al., Sun Microsystems, ISSCC 2000
Principle of Switched Decap Circuit

- \(Q_{\text{swdecap}} = 0.5C \cdot V_{dd} + C \cdot \Delta V_{dd}/2 \)
- \(Q_{\text{pdecap}} = 2C \cdot \Delta V_{dd} \)
- 5–13X charge boosting factor (i.e. \(Q_{\text{swdecap}}/Q_{\text{pdecap}} \))
Proposed Digital Switched Decap

- Digital resonant detection circuit
 - Simple implementation for digital ICs
 - Low static power
- Programmable V_{SW}, PVT insensitive design
Bandpass and PVT Insensitive Design

• RC circuit & delay line realize bandpass filter
• 8mV worst-case V_{SW} variation
Adjustability of Switching Threshold V_{SW}

- V_{SW} can be adjusted to avoid unnecessary switching
- V_{SW} is approximately proportional to R value
- R implemented using a programmable MOSFET array

![Graph showing the relationship between V_{SW} and R](image)
Simulated Switched Decap Performance

- Resonance is suppressed by 7dB
- More than 8X decap boost for resonant damping
Simulated First-droop Regulation

- Both magnitude and oscillation time are reduced for first-droop noise
- 6X+ decap boost compared with passive decap
Test Chip Organization

- Two types of noise generation circuits
- Selection of swdecap value: 100pF, 200pF, 300pF
- On-chip sensor to measure differential noise
Resonance Generation Logic

- Creates harmonics at resonant frequency
Supply Noise Measurements

- 640MHz clock gated by 1/16
- 5.5dB noise reduction using 200pF swdecap
- f_{res} at 40MHz lower than expected due to package inductance
Frequency Domain Measurements

- 9.8dB suppression using 300pF swdecap
- No significant impact on non-resonant frequency noise
• Noise magnitude more sensitive to swdecap value than V_{SW}
Comparison with Passive Damping

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100pF</td>
<td>2.2dB</td>
<td>500pF</td>
<td>5X</td>
<td>0.1Ω</td>
</tr>
<tr>
<td>200pF</td>
<td>5.5dB</td>
<td>1500pF</td>
<td>7.5X</td>
<td>0.4Ω</td>
</tr>
<tr>
<td>300pF</td>
<td>9.8dB</td>
<td>3500pF</td>
<td>11X</td>
<td>1Ω</td>
</tr>
</tbody>
</table>

- 5–11X boost over passive decaps
- Equivalent to 0.1-1Ω resistive damping
- Passive resistor aggravates IR drop
Performance Comparison

<table>
<thead>
<tr>
<th></th>
<th>Active Damping Ckt.*</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>90nm</td>
<td>130nm</td>
</tr>
<tr>
<td>Static Current</td>
<td>2.42mA</td>
<td>0.54mA</td>
</tr>
<tr>
<td>Load Current</td>
<td>8.71mA (3X I_{static})</td>
<td>33mA (61X I_{static})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulator Area</td>
<td>59x20μm2</td>
<td>190x220μm2 (including 300pF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Droop</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Regulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Opamp</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

* J. Xu et al., Intel, ISSCC 2007
Die Photograph and Chip Summary

- 9X less static current compared with prev. swdecap design
- Swdecap serves as passive decap under norm. condition
- Up to 11X decap boost compared with passive decap
- Negligible power consumed for decap switching (1.2%)

Technology
- 0.13μm Logic CMOS

Quiescent Current
- 0.54mA

Regulation Frequency
- 10–300MHz

Regulator Area (w/o decap)
- 100μmx70μm

Regulator Area (w/ 300pF decap)
- 190μmx220μm

Total Die Area
- 0.9mx1.8mm
Conclusions

• Resonant supply noise impacts circuit performance and reliability

• A switched decap circuit is proposed
 – Low power resonant detection circuit
 – Digital-friendly implementation
 – Programmable and PVT insensitive switching threshold

• 0.13μm test chip implemented
 – 5–11X boost in effective decap value
 – Up to 9.8dB resonant noise suppression
 – 9X reduction in static current compared with previous switched decap design